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Abstract

A product operator matrix is proposed to describe scalar couplings in liquid NMR. Combination of the product operator matrix
and non-linear Bloch equations is employed to describe effects of chemical shift, translational diffusion, dipolar field, radiation
damping, and relaxation in multiple spin systems with both scalar and dipolar couplings. A new simulation algorithm based on this
approach is used to simulate NMR signals from dipolar field effects in the presence of scalar couplings. Several typical coupled spin
systems with both intra-molecular scalar couplings and inter-molecular dipolar couplings are simulated. Monte Carlo methods are
incorporated into simulations as well to analyze diffusion process in these complicated spin systems. The simulated results of diffu-
sion and relaxation parameters and 2D NMR spectra are coincident with the experimental measurements, and agree with theoretical
predictions as well. The simulation algorithm presented herein therefore provides a convenient means for designing pulse sequences
and quantifying experimental results in complex coupled spin systems.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In 1946, soon after the experimental discovery of mag-
netic resonance, Bloch formulated a set of phenomeno-
logical motion equations for various magnetization
components [1]. These equations have played a central
role in elucidating magnetic resonance phenomena ever
since [2]. In 1956, Torrey modified the Bloch equation
by incorporating a diffusion term [3]. Dynamics of an
ensemble of spinswithoutmutual couplings is usuallywell
described by the Bloch equations [4,5], which can be
viewed as mathematical descriptions of precession of the
macroscopic magnetization vector around a (possibly
time-dependent) magnetic field. With the Bloch equa-
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tions, effects of relaxation, molecular diffusion, chemical
shift, magnetic field inhomegeneity, radiation damping,
and long-range dipolar field can all be incorporated into
spin dynamic calculations. However, Bloch equations as
a model for magnetization vectors fail when scalar cou-
plings exist in spin systems. The reason is that the scalar
coupling is amicroscopic quantumeffect,which in general
cannot be described as precession of three-dimensional
macroscopic vectors. In this case, the Bloch equations
have to be replaced usually with a more complex descrip-
tion using the density matrix formalism [6]. Though the
density matrix formalism can deal with complex quan-
tum-mechanical behaviors of an ensemble of spins, it is
difficult to handle macroscopic effects such as radiation
damping, diffusion, and long-range dipolar field. There-
fore, both of the Bloch equations and density matrix for-
malism have their own advantages and shortcomings.

Recent studies of high order multiple spin echoes
in multiple-pulse NMR, which are signatures of
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inter-molecular multiple quantum coherences (MQCs)
[7,8], have triggered some extensive theoretical and
experimental activities [9–12] and resulted in exciting no-
vel applications in MRS and MRI [13,14]. The phenom-
enon results from long-range dipolar couplings among
distant dipoles of abundant spins in liquid. Two superfi-
cially quite different theoretical frameworks have
emerged to explain the phenomenon. The classical or
‘‘mean-field’’ treatment introduces a dipolar demagne-
tizing field or distant dipolar field, which produces
non-linear terms in the Bloch equations for the magne-
tization. It has been used in a wide variety of applica-
tions [9,10]. Alternatively, in the Warren�s treatments
of inter-molecular multiple-quantum coherences (re-
ferred to as ‘‘Warren�s treatments’’ later) the dipolar
field is expressed in terms of pair-wise interactions be-
tween all the spins in a sample [15]. The observable mag-
netization is derived from multiple-spin operators in the
equilibrium density matrix with the high temperature
approximation removed. However, except for some geo-
metrically symmetrical samples with magnetization
modulated in one direction only, analytical expressions
are mostly unobtainable using the Warren�s treatments.
In an attempt to take the advantages and overcome
shortcomings in both the classical dipolar field treat-
ments and the Warren�s treatments, we propose a new
algorithm based on a combined use of matrix operations
and the Bloch equations, to simulate NMR signals from
systems with inter-molecular MQCs in the presence of
relaxation, radiation damping, diffusion, and also scalar
couplings. The simulated results are verified theoreti-
cally and experimentally.
2. Theories and methods

2.1. Dynamical equations for spins

Deville introduced the concept of the classical dipolar
field, and proposed the non-linear Bloch equations with
dipolar field term [16]. After that, Jeener proposed an
iterative scheme for solving the ‘‘modified Bloch-Red-
field equations’’ [10]. If the superscript i represents the
ith type of spins, the motion equation of the magnetiza-
tion vector M(i) (r, t) in a frame rotating at the Larmor
frequency is given by:

dM ðiÞðr; tÞ
dt

¼ cM ðiÞðr; tÞ
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where c is the magnetogyric ratio; x̂, ŷ, and ẑ are unit
vectors along three orthogonal coordinate axes; ŝ is a
unit vector along the direction of the gradient applied
for modulating the dipolar field, and G (ŝ, r) is the
strength of this gradient along the ŝ direction at the po-
sition r; DB (r, t) is the inhomogeneous field at the posi-
tion r; DðiÞT is the translational self-diffusion coefficient of
the ith type of spins; T ðiÞ1 and T ðiÞ2 are longitudinal and
transverse relaxation times of the ith type of spins,
respectively. M ðiÞðr; 0Þ ¼ M ðiÞ0 ẑ is the initial magnetiza-
tion vector of the ith type of spins. Generally, modula-
tion in magnetization can be introduced by pulsed
gradient fields, spatial variation in the magnetization
density, and inhomogeneity in the static magnetic field.
The vector ŝ is, therefore, not always along ẑ even when
the gradient is applied along this direction. However, in
most solution NMR, all other factors are much weaker
compared to pulse gradient fields which are applied to
modulate the magnetization, so it is assumed that ŝ is
along the z direction for simplification in the following
simulation. BðjÞr ðr; tÞ is the radiation damping field given
by [17]:

BðjÞr ðr; tÞ ¼
hM ðjÞy ðtÞi
cM ðjÞ0 sðjÞr

x̂þ hM
ðjÞ
x ðtÞi

cM ðjÞ0 sðjÞr
ŷ; ð2Þ

where sðjÞr ¼ 1=ð2pgM ðjÞ0 QcÞ is the characteristic time of
radiation damping, g is the filling factor, Q is the probe
Q-factor, and hM ðjÞx ðtÞi and hM ðjÞy ðtÞi are the average
magnetizations in the transverse plane.

B
ðjÞ
d ðr; tÞ is the dipolar field in position r at time t, pro-

duced by the jth type of spins due to effect of dipolar
interactions in a concentrated sample. It is the only part
survived averaging from the Zeeman interactions. When
the static field B0 and the equilibrium magnetization dis-
tribution M ðjÞ0 satisfy the condition B0 � l0M

ðjÞ
0 over the

whole sample, BðjÞd ðr; tÞ is given by [17]:
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where l0 is vacuum magnetic permeability and hrr0 is the
angle between the inter-nuclear vectors connecting spins
at positions r and r 0.

Since the dipolar field is a non-local function of the
magnetization and must be integrated over the whole
sample for every point in space, it is quite computation-
ally expensive to calculate the dipolar field directly with
Eq. (3). In experiments, the magnetization is usually as-
sumed to be fully modulated and vary only in one
direction. When a strong linear field is applied in a spe-
cific direction ŝ, a Fourier analysis can show that the
non-local dipolar field is reduced into the following
form [17]:

B
ðjÞ
d ðs; tÞ ¼ l0Ds½M ðjÞz ðs; tÞẑ� 1

3
M ðjÞðs; tÞ�; ð4Þ
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where Ds ¼ ½3ðŝ � ẑÞ2 � 1�=2. When ŝ is along the ẑ direc-
tion, we have

B
ðjÞ
d ðr; tÞ ¼ l0½M ðjÞz ðr; tÞẑ� 1

3
M ðjÞðr; tÞ�: ð5Þ

If the dipolar field cannot be localized, for example,
when the magnetization is not fully modulated or it does
not vary only in one direction, a spatial Fourier trans-
form can be used to simplify the relation between
B
ðjÞ
d ðr; tÞ and M(j) (r, t):
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where k and k̂ are the wave vector and corresponding
unit vector in the k space, with

B
ðjÞ
d ðk; tÞ ¼

Z
d3r expðik � rÞBðjÞd ðr; tÞ; ð7aÞ

M ðjÞðk; tÞ ¼
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d3r expðik � rÞM ðjÞðr; tÞ: ð7bÞ

A transformation between the real space and Fourier
space can reduce the huge computational time for the
spatial integral of the dipolar field [17].

When the acquisition time is relatively short, signal
attenuation due to diffusion effects can generally be ig-
nored. However, as the observable signal grows over a
time of the order of the dipolar demagnetizing time
sðjÞd ¼ 1=ðcl0M

ðjÞ
0 Þ, it is essential to include the diffusion

effect [15]. The diffusion attenuation may be treated in
Fourier transformation space. The calculation of the
bulk diffusion operator DðiÞT r2 is reduced to multiplica-
tion �DðiÞT k2 in the Fourier space. Note that the diffusion
operator DðiÞT r2 is only valid for isotropic samples.
r � DðiÞT r must be used for anisotropic samples like li-
quid crystals [18], where DðiÞT is a tensor. Moreover, in
the case of ‘‘anomalous diffusion,’’ where molecular dis-
placements during successive time intervals are corre-
lated, Torrey�s method (diffusion operator DðiÞT r2) does
not apply and one has to resort to other methods [19].
Monte Carlo method is a good choice in such case.

Eq. (1) is a set of ordinary differential equations. In
order to describe the detected NMR signals at a time
tfinal, Eq. (1) must be integrated from t = 0 to tfinal. This
can be done with a fifth-order Cash–Karp Runge–Kutta
formulism [17]. The step size during time evolution can
be varied based on estimation of the truncation errors
and balance between the calculation speed and needed
numerical accuracy [20].

2.2. Product operator matrix method

Several works have been carried out to treat strongly
coupled spin systems and multiple quantum effects. For
example, a treatment of inter-molecular MQCs in the
presence of scalar couplings in solution NMR has been
discussed by Warren and co-workers [21]. Based on the
density matrix, Stables et al. [6] have proposed a method
to simulate the effects of scalar couplings in spin echo
experiments. Edén has discussed simulations in the sol-
id-state NMR [22], including the spin systems with
strongly coupling and spin > 1/2. However, these meth-
ods are hard to incorporate macroscopic effects such as
diffusion and radiation damping in coupled spin systems
during multiple-pulse experiments. Jeener [19,23] pro-
vided a similar tool to solve the J-coupled spin systems
under dipolar effects using spin density matrix. A simple
numerical technique was proposed for the prediction of
the effects of diffusion in spin echo experiments of the
CRAZED type. However, since density matrix in a mul-
tiple-spin system such as what is dealt with in this work
is complex, the simulation process based on standard
density matrix becomes difficult and time-consuming.
Recently, Blanton provided a fast NMR C++ tool kit,
with which one can simulate macroscopic effects or
microscopic effects when they exist independently [24].
Problems emerge, however, when scalar coupling (which
is a quantum mechanical effect) needs to be considered
together with the effects of dipolar field and radiation
damping (which are macroscopic effects). Helgstrand
and Allard also distributed a powerful NMR simulation
tools (http://www.bpc.lu.se/QSim/index.html). How-
ever, the simulation is still divided into two different
methods: classical and quantum mechanical, so the situ-
ation is not improved. Actually, the macroscopic effects,
such as radiation damping, diffusion and dipolar field
are not included in their simulation. Since pair-wise
spin–spin or multi-spin interactions cannot be repre-
sented by magnetization vectors, scalar couplings can-
not be introduced into the non-linear Bloch equations
directly. To describe the evolution behaviors of scalar
couplings in the course of solving the non-linear Bloch
equations, we propose to use a product operator matrix,
Mmat, to describe scalar couplings among multiple spins.

If I and S represent two kinds of spins (either homo-
nuclear or hetero-nuclear) scalarly coupled with each
other in one molecule, a product operator matrix for
an InSm spin-1/2 system can be built with a
4� 4� � � � � 4|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}nþm matrix, where n and m are the num-

bers of I and S spins, respectively. Its element number
is the same as that of the density operator matrix
(2n+m · 2n+m matrix). In the simulation, the sample is
always divided into some cells, for example, along the
z axis. Every cell is represented by a matrix containing
the complete spin information of the cell at the corre-
sponding position. Therefore, a matrix can represent
not only a coupled spin system in one molecule, but
also represent the average spin property of one cell.
Element of the product operator matrix is represented
by Mmat (I1a, I2a, . . . , Iia, . . . , In+m, a), where the symbol
Iia represents a specific component (such as Iix, Iiy, or
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Iiz) of the ith spin operator or unit element E.
Since the base operator, 2q�1I1aI2a � � � InaS1aS2a � � � Sma,
corresponds to a coherence term, where q is the
number of spin operators in the product operator,
Mmat (I1a, I2a, . . . , Iia, . . . , In + m, a) can be considered as
the magnitude of the base operator. For example,
Mmat (I1x, I2x, . . . , Inx,S1x, . . . ,Smx), Mmat (I1y, I2x, . . . ,
Inx,S1x, . . . ,Smx), Mmat (I1z, I2x, . . . , Inx,S1x, . . . ,Smx),
and Mmat (E, I2x, . . . , Inx,S1x, . . . ,Smx) represent the
magnitude of coherence terms 2n+m�1I1xI2x � � �
InxS1xS2x � � � Smx, 2n+m�1I1yI2x � � � InxS1xS2x � � � Smx,
2n+m�1I1zI2x � � � InxS1xS2x � � � Smx, and 2n+m�2I2xI3x � � �
InxS1xS2x � � � Smx, respectively. Mmat (I1x,E, . . . ,E, . . . ,
E) represents the intensity value of I1x term, which is
a single-spin term for the x component of the I1 spin.
Similarly, Iix, Iiy, Iiz, Sjx, Sjy, and Sjz represent the cor-
responding components of the spin operators Ii or Sj.
The elements of the product operator matrix corre-
sponding to Iix, Iiy, and Iiz (or Sjx, Sjy, and Sjz) can
be treated as specific components of a general ‘‘magne-
tization vector’’ M (i). In fact, they are considered to ac-
count for the magnetization in the volume element at a
specific position of the sample. The evolution of M (i)

under chemical shift, RF field, inhomogeneous back-
ground field, dipolar field, radiation damping, and dif-
fusion can be described by the modified Bloch
equations shown in Eq. (1). Relaxation is not included
except for the single-quantum term due to the complex-
ity of relaxation in the case of the intra-molecular
MQCs [25]. Scalar couplings are introduced indepen-
dently into the product operator matrix. According
to the rules of scalar couplings, there exist only
2IizSjz (1 6 i 6 n, 1 6 j 6 m) evolution operators for
an InSm spin system [26]. Matrix operation rules for
the scalar coupling operator, 2IizSjz, can therefore be
deduced:

MmatðI1a; I2a; . . . ;E; . . . ; Ina;S1a;S2a; . . . ;Sjx; . . . ;SmaÞ !
2IizSjz

MmatðI1a; I2a; . . . ; I iz; . . . ; Ina;S1a;S2a; . . . ;Sjy ; . . . ;SmaÞ

MmatðI1a; I2a; . . . ;E; . . . ; Ina;S1a;S2a; . . . ;Sjy ; . . . ;SmaÞ !
2IizSjz

MmatðI1a; I2a; . . . ; I iz; . . . ; Ina;S1a;S2a; . . . ;Sjx; . . . ;SmaÞ

9>>>>>=
>>>>>;
ð8Þ

Eq. (8) provides evolution relations of the matrix ele-
ments due to the scalar coupling operator 2IizSjz in the
product operator matrix. The relations are simplified by:

aSxj þ bIziSyj !
h2IziSzj

h¼pJ
aSxj cos hþ aIziSyj sin hþ bIziSyj cos h� bSxj sin h

aSyj þ bIziSxj !
h2IziSzj

h¼pJ
aSyj cos h� aIziSxj sin hþ bIziSxj cos hþ bSyj sin h

9>=
>;;
ð9Þ
where a and b are the coefficients of the corresponding
terms, J is the scalar coupling constant of the spin sys-
tem InSm, and s is the step size used in the Cash–Karp
Runge–Kutta equation [17]. In Eq. (9), all terms irrele-
vant to the evolution under the operator 2IizSjz were ig-
nored. After every evolution, the corresponding scalar
coupling process is calculated. For other spin coupled
systems, similar product operator matrix and scalar cou-
pling rules are easily obtained.

2.3. Monte Carlo method

Numerical simulation is very powerful in handling
some complicated systems in which spin dynamics
and time evolution are very difficult to follow with ana-
lytical methods alone [27–29]. For example, Monte
Carlo method can be used to simulate free and re-
stricted diffusion through Brownian motion. A com-
mon way to simulate such diffusion process is to
represent diffusion as a sequence of small random
displacements

Zðt þ sÞ ¼ ZðtÞ þ DZ; ð10Þ
where Z (t) is the position of the particle at time t,
Z (t + s) is its position at time t + s, and DZ is a ran-
dom displacement of the particle in the time interval s.
Because we limit our discussion to the situation in
which the magnetic gradient is applied only along
the z direction, only the displacement along this direc-
tion needs to be considered. Since the motion of parti-
cles is stochastic, the displacement DZ can be given by
random walk with DZ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2DT s
p

e cosðbÞ, where b is the
angle between the z axis and the walking direction of
the simulated particle, and e is a random number. If
the average free path, k, is set to

ffiffiffiffiffiffiffiffiffiffiffi
2DT s
p

, the free path
distribution sampling method is then represented by
[30]:

e ¼ � lnðe1Þ; ð11Þ
where both e1 and b are uniformly distributed and can
be generated by a computer random number generator
directly (with e1 limited between 0 and 1, and b limited
between 0 and 2p). The random number e is completely
uncorrelated, i.e., its self-correlation coefficient is zero.
They are distributed according to the free path distribu-
tion function:

pðeÞ ¼ e�e=k: ð12Þ
Though diffusion is usually considered to be free in

solution NMR, a finite boundary is needed for simula-
tion. We assume that the length of the sample is
L = 2R, and perfectly reflecting walls are located at
z = �R and z = R. The reflecting boundary condition
is accounted for by replacing z with �z � 2R, or
2R � z whenever z < �R or z > R. In the simulation,
R of several mm is used, and the diffusion is taken to
be free between boundaries. Although the diffusion term
in the non-linear Bloch equations can describe diffusion
behavior generally, Monte Carlo method is more flexible
and intuitive in the cases of restricted diffusion.
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2.4. Simulation process

The simulation procedure was divided into two
steps. First, a Monte Carlo method was employed to
simulate the diffusion process of spins. Second, the
dipolar field was calculated after every spin was
moved to a new position after each step of motion,
and then the spin evolution based on the non-linear
Bloch equations was calculated. This process was re-
peated till the end of sampling. Parameters used in
simulations vary with the different spin systems. De-
tails will be given in the following section, when sim-
ulation results are discussed.
3. Results and discussion

3.1. Simulation of diffusion effects

Self-diffusion is a process of random translational
motion of molecules driven by internal kinetic energy.
Diffusion NMR spectroscopy and MR imaging are pres-
ently the only available non-invasive methods that can
provide information about molecular displacements in
a spatial scale comparable to cell dimensions of biolog-
ical systems [31]. The mathematics required for describ-
ing diffusion is rather complicated except for diffusion in
free space or restricted diffusion within samples of sim-
ple geometries. As a result, analytical solutions are gen-
erally impossible and numerical solutions are called for
[15]. The diffusion behavior under the dipolar field has
been discussed previously [12,32–34]. However, to the
best of our knowledge, it has not been simulated with
the combination of the dipolar field model and Monte
Carlo methods. In addition, the diffusion behavior of in-
Fig. 1. Pulse sequences used in this paper: (A) a modified CRAZED sequ
modified intra-molecular MQC sequence for characterization of MQCs, an
relaxation of SQCs and inter-molecular DQCs.
ter-molecular MQCs in the presence of scalar couplings
has not been reported either.

The Monte Carlo method with a random walk model
can be used to describe molecular diffusion process, and
non-linear Bloch equations and product operator matrix
method depict time evolution of each spin under chem-
ical shift, dipolar field, relaxation, and scalar coupling.
Therefore, diffusion process on conventional single-
quantum coherences (SQCs), intra-molecular double-
quantum coherences (DQCs), and inter-molecular
DQCs can be studied by combining Monte Carlo meth-
od with non-linear Bloch equations and product opera-
tor matrix method. In this section, we focus on the
diffusion behaviors under the joint effects of the dipolar
field and intra-molecular scalar couplings.

Field gradients applied during spin evolution (either
for dipolar field modulation or for diffusion measure-
ments) attenuate NMR signal. When the pulse se-
quences shown in Figs. 1A and B are employed,
diffusion attenuation factor E due to free diffusion is gi-
ven by:

lnE ¼ �c2G2
1d

2DApp
T ðD1 þ 2d=3Þ; ð13Þ

where DApp
T is the apparent diffusion coefficient, d and G1

are the duration and amplitude of diffusion weighting
gradients, and D1 is the time interval between the two
diffusion weighting gradients.

As an example, a two-component AX + C spin sys-
tem with different resonance offsets was simulated for
diffusion effects in multiple-spin systems with intra-
and inter-molecular couplings. AX denotes solute with
JAX = 10 Hz and C denotes solvent. Their resonance off-
sets were set to be xA = 400 Hz, xX = �300 Hz, and
xC = 0 Hz, respectively. It is assumed that the self-diffu-
sion rates of C and AX components are 2.5 · 10�9 m2/s
ence for characterization of SQCs and inter-molecular MQCs, (B) a
d (C) a modified CRAZED sequence for characterizing longitudinal
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and 1.5 · 10�9 m2/s, respectively. These parameters are
close to what have been measured in experiments. Other
parameters used in the simulation are: longitudinal and
transverse relaxation times of the three peaks are all
1.0 s; duration of all gradient pulses is 2 ms; acquisition
time of free induced decay signal is 1.64 s with 4096 sam-
pling points. The length of the sample is 1.0 · 10�3 m
along the z axis. The number of the particles is
4 · 105, and the longitudinal axis is divided into
1000 units. The step size for the Monte Carlo simulation
is 0.4 ms. The pulse sequence shown in Fig. 1A with
a = 0 and G = 0 is used for simulation of conventional
SQC diffusion, and with a = p/2 and n = �2 for simula-
tion of inter-molecular DQC diffusion effects. The pulse
sequence shown in Fig. 1B is used for simulation of
intra-molecular DQC diffusion effects. In inter- and
intra-molecular DQC simulations, the amplitude of the
coherence-selection gradient G is 10 G/cm. The ampli-
tude of diffusion weighting gradients G1 is varied from 0
to 9 G/cm with increment of 1 G/cm. If the second RF
pulse in Fig. 1A were not frequency selective for inter-
molecular DQCs, the signals located at the solute peak
positions in the 1D spectrum would not only come from
the solvent–solute coherence signal, but also come from
the solute–solute coherence signal. It is then impossible
to obtain the apparent diffusion rate of a specific compo-
nent. Therefore, the secondRFpulse in Fig. 1A is set to be
selective only for the solvent (i.e., C component) to
eliminate the solute–solute coherence peaks. Simulated
diffusion rates from different coherence orders during
the evolution period are listed in Table 1. The simulated
SQC diffusion rates, DC

SQC ¼ ð2:47� 0:01Þ � 10�9 m2=s
and DAX

SQC ¼ ð1:49� 0:01Þ � 10�9 m2=s, are very close to
their input values. According to the diffusion properties
in a homo-nuclear experiment [35], the signals originating
from intra-molecular MQCs would decay exponentially
at a rate DMQC = n2DT [36]. For intra-molecular DQCs,
the simulated apparent diffusion rate of the solute is found
to be DAX

DQC ¼ ð5:90� 0:01Þ� 10�9 m2=s, coincident with
the theoretical prediction value of 6.0 · 10�9 m2/s. For in-
ter-molecular DQCs, our previous work [12] has demon-
strated the following relationship:DAX ;C

iDQC ¼ DC
T þ DAX

T and
DC;C

iDQC ¼ 2DC
T , whereD

AX ;C
iDQC denotes the apparent diffusion

rate of the signal originating from the solute–solvent
Table 1
Diffusion rates of AX + C spin system

Diffusion rate Simulation result
(· 10�9 m2/s)

Theoretical prediction
(· 10�9 m2/s)

DC
SQC 2.47 ± 0.01 2.50

DAX
SQC 1.49 ± 0.01 1.50

Intra-molecular DAX
DQC 5.90 ± 0.01 6.00

Inter-molecular DC;C
iDQC 5.01 ± 0.05 5.00

Inter-molecular DAX ;C
iDQC 3.99 ± 0.02 4.00
inter-molecularDQCs, andDC;C
iDQC represents the apparent

diffusion rate of the signal originating from solvent–
solvent inter-molecular DQCs.

In Table 1, the simulated diffusion rates are DC;C
iDQC ¼

ð5:01� 0:05Þ � 10�9 m2=s and DAX ;C
iDQC ¼ ð3:99� 0:02Þ�

10�9 m2=s, respectively, in good agreement with the the-
oretical predictions of 5.0 · 10�9 m2/s and 4.0 · 10�9

m2/s, respectively. These results suggest that the combi-
nation of Monte Carlo method, non-linear Bloch equa-
tions, and the product operator matrix method can be
used successfully to simulate diffusion under complex
pulse sequences and with both intra- and inter-molecu-
lar MQC effects.

3.2. Simulation of relaxation effects

Transverse relaxation process of nuclear systems is
related to rotational motion and transport of mole-
cules, molecular structure, and spin–spin interactions.
The apparent transverse relaxation time of n-order in-
ter-molecular dipolar interactions, TApp

2;n , may contain
information to complement conventional SQC T2 mea-
surements [37]. Transverse relaxation behaviors of
SQCs and inter-molecular DQCs were simulated for a
two-component spin system, consisting of I (solvent)
and S (solute) spins with different chemical shifts and
relaxation times. This system mimics the real spin sys-
tems we studied previously [12]. The simulation param-
eters are xI = 0 Hz (solvent), xS = 400 Hz (solute),
T I

1 ¼ 2:0 s, T I
2 ¼ 1:0 s, T S

1 ¼ 1:0 s, and T S
2 ¼ 0:6 s. Diffu-

sion rates of both the solvent and solute are
2.0 · 10�9 m2/s. The pulse sequence shown in Fig. 1A
with G1 = G = 0 and a = 0 is used for conventional
SQC simulation, and with G1 = 0, n = �2, and a = p/
2 for inter-molecular DQC simulation. The second
RF pulse is selective for spin I in inter-molecular
DQC simulation. D1 is varied from 0 to 0.45 s with
increment of 0.05 s. Other simulation parameters are
the same as those in Section 3.1.

The transverse relaxation attenuation equation is
[37]:

lnE ¼ �D1=T
App
2 ; ð14Þ

where TApp
2 is the apparent transverse relaxation time.

The simulation results are listed in Table 2. The appar-
ent transverse relaxation time of inter-molecular DQC
signal (n = 2) obeys the following rule [12,38]:

1=T I;S
2;2 ¼ 1=T I

2 þ 1=T S
2 : ð15Þ

When the signal is from the solvent–solvent DQCs, the
simulated transverse relaxation time is T I;I

2;2 ¼ ð0:51�
0:01Þ s, in agreement with the theoretical prediction of
0.50 s. When the signal is from the solvent–solute
DQCs, its transverse relaxation time T I;S

2;2 ¼ ð0:38�
0:01Þ s, also coincident with the theoretical value of
0.38 s.



Table 2
Transverse relaxation times of I + S spin system

Transverse relaxation time Simulation
result (s)

Theoretical
prediction (s)

SQC T I
2 0.99 ± 0.01 1.00

SQC T S
2 0.60 ± 0.01 0.60

Inter-molecular DQC T I ;I
2;2 0.51 ± 0.01 0.50

Inter-molecular DQC T I ;S
2;2 of S 0.38 ± 0.01 0.38
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Longitudinal relaxation is a recovery process of lon-
gitudinal magnetization from a non-equilibrium state
toward the equilibrium state. The saturation-recovery
method shown in Fig. 1C was employed to measure lon-
gitudinal relaxation time. The first RF pulse is a pre-sat-
uration pulse. For inter-molecular DQCs, the second
RF pulse is selective for solvent (I spin) with a = p/2
and n = �2. For SQCs, a = 0 and G = 0. The saturation
recovery time D is varied from 0 to 3.8 s with increment
of 0.2 s. The dependence of the normalized SQC signal
intensity on saturation recovery time D is:

E ¼ 1� e�D=T
I
1 : ð16aÞ

The dependences of the normalized signal intensities
from inter-molecular DQCs on D are [12]:

ES ¼ ð1� e�D=T
I
1Þð1� e�D=T

S
1 Þ; ð16bÞ

EI ¼ ð1� e�D=T
I
1Þ2: ð16cÞ

Eqs. (16b) and (16c) corresponds to the signals of the
solute and solvent, respectively. The simulated results
are shown in Fig. 2. Fitting to Eq. (16a) yields the
SQC longitudinal relaxation times of (0.99 ± 0.01) s
and (1.99 ± 0.01) s for the solute and solvent, respec-
tively. Similarly, the simulated longitudinal relaxation
times of the signals from inter-molecular DQCs are
Fig. 2. Normalized longitudinal relaxation curves of a two-component
spin system for SQCs and inter-molecular DQCs. The evolution time D
is from 0 to 3.8 s with increment of 0.2 s. The other simulation
parameters are described in context.
(0.99 ± 0.01) s and (1.97 ± 0.01) s for the solute and sol-
vent, respectively. All these results are close to the theo-
retical values of 1.0 and 2.0 s as calculated with Eqs.
(16b) and (16c).

3.3. Simulation of 2D spectra of intra- and inter-
molecular MQCs

2D spectra of intra- and inter-molecular DQCs and
ZQCs were simulated, and the experimental measure-
ments were performed for validation. Since the multi-
ple quantum terms in the product operator matrix do
not affect the transverse magnetization in the detection
period, they were ignored in the simulation. The sam-
ple used for intra- and inter-molecular DQCs and
ZQCs studies was a A2X3 system with xA = 400 Hz
and xX = �518 Hz, and JAX = 7.4 Hz, corresponding
to a solution of CH3CH2Br in CDCl3 used in measure-
ments at 11.7 T. In the simulation, 1024 points are
sampled in the direct detection dimension (F2) with
512 increments in the indirect dimension (F1). Both
dimensions are zero-filled to 4096 points. This reduces
computational time greatly. It takes about 4 h of CPU
time for an A2X3 spin system on a PC computer (AMD
XP 2500+, 512 Mb memories) to obtain a 2D spec-
trum with satisfactory signal-to-noise ratio and
resolution.

A dilute solution was used in order to eliminate the
effects of radiation damping. The pulse sequence shown
in Fig. 1B was used for both simulation and measure-
ment. To better reproduce the experimental results, the
RF pulses were purposely deviated from the ideal p/2
pulse by about p/36 in simulation. Fig. 3 displays the
simulated and experimental results of 2D intra-molecu-
lar ZQC spectra. Clearly, the simulated spectrum
matches the experimental result well. There are totally
six cross-peaks in the simulation spectrum. The cross-
peaks in the simulated spectrum located at (xA � xX,
xA), (xX � xA,xA), and (0,xX) are found correspond-
ingly in the experimental spectrum. The weaker
cross-peaks located at (0,xA), (xA � xX,xX), and
(xX � xA,xX) are caused by the non-ideal RF pulses
and would disappear when the RF pulses are set to be
ideal. The regions of the cross-peaks labeled by (I) and
(II) are expanded in the figure. It can be seen that
cross-peak (I) is a doublet along the F1 axis and a quar-
tet along the F2 axis, and the cross-peak (II) is a singlet
along the F1 axis and a triplet along the F2 axis. The
multiplicity patterns of the simulated cross-peaks are
coincident with the experimental ones quite well. It is
worth noting that the experimental conditions were
not as ideal as for the theoretical simulation. For exam-
ple, the effects of radiation damping cannot be elimi-
nated entirely, and the sample may be not pure. These
factors lead to some artifacts in experimental spectra,
which do not occur in the simulation results.



Fig. 3. 2D spectra of intra-molecular ZQCs from experiment (A) and
simulation (B). The solute is CH3CH2Br denoted as A2X3

(xA = 400 Hz, xX = �530 Hz, and JAX = 7.4 Hz), and the solvent is
CDCl3. The pulse sequence is shown in Fig. 1B (n = 0) where the three
RF pulses are deviated from the ideal pulse (p/2) by about p/36 in the
simulation to better mimic the experimental conditions. The evolution
time is D = 1/2JAX to obtain the strongest intra-molecular ZQC
signals.
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To obtain 2D inter-molecular DQC spectra, the pulse
sequence shown in Fig. 1A was applied to a concen-
trated solution of CH3CH2Br in acetone (denoted as
A2X3 + C with xA = 691 Hz, xX = �227 Hz, JAX =
7.4 Hz, and xC = 0 Hz). The probe was detuned to low-
er Q factor in order to suppress the effects of radiation
damping. The simulated and experimental results are
shown in Figs. 4 and 5. The second RF pulse is non-se-
lective for spectra in Fig. 4 and selective to acetone for
spectra in Fig. 5. Comparing Fig. 4 with Fig. 5, it is clear
that the selective RF pulse reduces the number of cross-
peaks significantly. Because the inter-molecular solute–
solute DQC cross-peaks are eliminated when only the
solvent is excited by the second RF pulse, the resultant
2D spectra are greatly simplified. Most interestingly,
there exist some ‘‘forbidden’’ cross-peaks such as
(xX + xC,xA) and (xA + xC,xX). These ‘‘forbidden’’
cross-peaks arise from competition between inter-molec-
ular dipolar couplings and intra-molecular scalar cou-
plings [39]. Their multiplet patterns are rather different
from conventional ones. The regions labeled by (I–IV)
are expanded to display more details. Region (I) has a
‘‘forbidden’’ cross-peak which is a doublet along the
F1 axis and a quartet along the F2 axis. It is noting that
the individual peaks in the quartet have same intensities,
quite different from the intensity ratio 1:3:3:1 of a nor-
mal quartet. Both simulated and experimental results
of the regions labeled by (I–IV) give the same multiplet
patterns.

To simulate the effect of non-ideal RF pulses in
experiments, flip angles deviated from p/2 (by about p/
36) were used to simulate the selective inter-molecular
DQCs (see Fig. 5). Most simulated cross-peaks find their
correspondences in the experimental spectrum. Accord-
ing to the theoretical analysis, there should be only three
diagonal peaks (labeled by (I), (II), and (III)) in Fig. 5,
corresponding to (xA + xC,xA), (xX + xC,xX), and
(2xC,xC). The minor differences between the two spec-
tra may be due to the inhomogeneous broadening of
magnetic field, residual effects of radiation damping,
non-ideal selective pulse, and non-ideal (p/2)x pulse.

So far, our results suggest that a combination of the
product operator matrix operation and non-linear Bloch
equations can be employed to follow conveniently and
efficiently time evolution processes of complex spin sys-
tems with both intra- and inter-molecular couplings un-
der multiple-pulses sequences, which are often difficult
or impossible when conventional product operator
methods or Bloch equations are applied alone. The re-
sults also show that the simulation method presented
herein is helpful to identify possible sources of some
unexpected experimental results, which may be difficult
to identify from theoretical deduction when the spin sys-
tem is complicated, such as an A2X3 system. Different to
the non-selective inter-molecular DQC spectra, the
cross-peaks in the selective inter-molecular DQC spectra
have very simple multiplet patterns (see for example re-
gions (I) and (II) in Fig. 5). Their projections on the F1
axis and F2 axis give the usual SQC 1D spectra.

The product operator matrix is a subset of the density
matrix. Since the formalism of conventional density ma-
trix for a multiple-spin system is complicated, the prod-
uct operator matrix is a good choice for simulation.
With physical intuition, the product operator matrix
can be operated by the non-linear Bloch equations di-



Fig. 4. 2D spectra of non-selective inter-molecular DQCs of the two-component spin system (A2X3 + C) from experiment (A) and simulation (B).
The regions of cross-peaks (I–IV) are expanded. The solute is CH3CH2Br (rescaled to xA = 691 Hz, xX = �227 Hz), and the solvent is acetone
(xC = 0 Hz). The pulse sequence is shown in Fig. 1A (n = �2) with non-selective RF pulses.
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rectly. Thus, the effects of the chemical shift and scalar
coupling as well as diffusion, relaxation, and dipolar
field can be simulated simultaneously. Moreover, the
features of standard product operator are reserved in
the product operator matrix method. Therefore, this
simulation algorithm is simple, efficient and precise even
for a complex coupled spin system.

Simulated efficiency is important for a 2D spectrum
simulation since a large amount of data need to be calcu-
lated. With the simulation algorithm, the computational
time for a 2D spectrum is still acceptable. The precision is
especially important when self-feedback dynamic exists
in the evolution of spin magnetization, such as the radi-
ation damping field or dipolar field. A small calculation
error at the beginning of simulation may greatly affect
the final results due to a self-feedback process. More
explicitness is expected for the chaotic dynamics pro-
duced by the joint effect of radiation damping field and
dipolar field in the solution NMR due to the high sensi-
tivity of chaos on the initial error. Warren and co-work-
ers have studied the chaotic phenomena in solution
NMR [13]. However, they limited their study to the sin-
gle spin system, since it has been thought that the J cou-
pling cannot be combined with the non-linear Bloch
equations. With the product operator matrix approach,
it is convenient to extended from single-spin system to
complex multiple-spin system with weakly coupling
and spin = 1/2 in the study of chaos.



Fig. 5. 2D spectra of selective inter-molecular DQCs of the two-
component spin system (A2 X3 + C) from experiment and simulation.
The regions labeled (I) and (II) are expanded. The pulse sequence is
shown in Fig. 1A (n = �2) with the second RF pulse selective only for
the solvent. The other parameters are the same as in Fig. 4.
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It has been shown that the inter-molecular MQCs can
provide a new contrast mechanism on MRI [14]. By now
all simulations and discussion on inter-molecular MQC
MRI are based on single spin system [14,40–42]. Using
the simulation method provided herein, more complex
spin system with intra-molecular scalar couplings can
be studied, and J coupling constant may provide a
new important imaging contrast parameter for MRI un-
der inter-molecular MQCs. Further, the efficient algo-
rithm will shorten the MRI simulation time which
often takes much computational effect. It is worth not-
ing that the product operator matrix method is only
applicable to weakly coupled 1/2 spin systems in solu-
tion NMR. For complex spin systems such as strong
coupled, spin > 1/2 system, and solid-state NMR, the
density matrix method is required [23].

The product operator matrix method proposed in this
work provides a tool to analyze and simulate simulta-
neously the effects of chemical shift, J couplings, relaxa-
tion, diffusion, dipolar field, and radiation damping. The
dipolar field resulted from the CRAZED sequence can-
not be ignored in the simulation when a concentrated
solution is placed in a strong static magnetic field. Sim-
ilarly, the radiation damping can be ignored in the sim-
ulation only when the probe is detuned and/or the filling
factor is very small. For a sample with short T1 and/or
T2, the relaxation effects cannot be ignored in the simu-
lation. Ignoring the effects of relaxation and diffusion
may significantly affect the lineshape of 1D spectra,
and may result in errors in the inter-molecular MQCs
simulations. On the other hand, the simulated results
are coincident with the experimental ones in a dilute
sample when the effects of radiation damping and dipo-
lar field are ignored. When both T1 and T2 are long en-
ough, the effects of relaxation can also be ignored in the
simulation. If the effects of radiation damping, relaxa-
tion, and diffusion in the solution NMR can be ignored,
the direct calculation based on product operator formal-
ism saves much computing time [21]. In such cases,
POMA program can be used to predict the evolution
process of product operators for a multiple-spin system
[43]. When the effects of relaxation, diffusion, and dipo-
lar field in the solution NMR are taken into account, the
product operator matrix method of this work can effec-
tively simulate inter-molecular MQCs with scalar cou-
plings for a multiple-spin system.
4. Conclusion

In this paper, a new method is proposed to simulate
behaviors of multiple-spin systems with both intra-mo-
lecular scalar couplings and inter-molecular dipolar cou-
plings. The method utilizes a combined approach with
product operator matrix operators, non-linear Bloch
equations, and Monte Carlo simulations. The validity
of the method is tested with experiments in sample sys-
tems. We demonstrate that the proposed method pro-
vides a convenient tool for studying behaviors of
complex spin systems under the effects of chemical shift,
dipolar field, radiation damping, self-diffusion, and sca-
lar couplings, and with different pulse sequences. NMR
spectra produced by complex pulse sequences may be
predicted by simulations before experiments are per-
formed. This will reduce experimental time since best
experimental conditions can be identified and optimal
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parameters can be chosen through simulations. Further-
more, since the cross-peaks in 2D spectra of complex
spin systems are in general complicated and crowded,
the simulation would be of great help in peak assign-
ment and interpretation in such cases, which is always
very difficult from precise theoretical analysis. The po-
tential problems occurred in experiments may also be
identified. The simulation method proposed herein is
also promising for studying scalar couplings in inter-mo-
lecular MQC imaging or the chaotic phenomena pro-
duced by the joint effects of dipolar field and radiation
damping.

Computational time for simulation increases fourfold
every time the number of spins in a spin system increases
by one. Fortunately, spin systems usually contain some
equivalent spins, which results in certain types of symme-
try for the product operator matrix. For example, the
number of elements of the product operator matrix for
AX3 spin system is reduced to 5/16 of its original ones
when the symmetry is taken into consideration. How to
make effective use of properties of symmetry in simulation
processes is still an unanswered question. The method
presented herein works well for the weakly coupled spin
1/2 system. We are in the process to extend it to strongly
coupled spin-1/2 and/or high spin (I > 1/2) systems.
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complete mathematica implementation of the NMR product-
operator formalism, J. Magn. Reson. A 101 (1993) 103–105.


	A simulation algorithm based on Bloch equations and product operator matrix: application to dipolar and scalar couplings
	Introduction
	Theories and methods
	Dynamical equations for spins
	Product operator matrix method
	Monte Carlo method
	Simulation process

	Results and discussion
	Simulation of diffusion effects
	Simulation of relaxation effects
	Simulation of 2D spectra of intra- and inter-molecular MQCs

	Conclusion
	Acknowledgments
	References


